Metric Dimension of Bounded Tree-length Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Dimension of Bounded Tree-length Graphs

The notion of resolving sets in a graph was introduced by Slater (1975) and Harary and Melter (1976) as a way of uniquely identifying every vertex in a graph. A set of vertices in a graph is a resolving set if for any pair of vertices x and y there is a vertex in the set which has distinct distances to x and y. A smallest resolving set in a graph is called a metric basis and its size, the metri...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

Spanners for bounded tree-length graphs

This paper concerns construction of additive stretched spanners with few edges for n-vertex graphs having a tree-decomposition into bags of diameter at most δ, i.e., the tree-length δ graphs. For such graphs we construct additive 2δ-spanners with O(δn+n log n) edges, and additive 4δ-spanners with O(δn) edges. This provides new upper bounds for chordal graphs for which δ = 1. We also show a lowe...

متن کامل

the metric dimension and girth of graphs

a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...

متن کامل

Metric Dimension for Random Graphs

The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2017

ISSN: 0895-4801,1095-7146

DOI: 10.1137/16m1057383